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biological activities, and various types of parameter de­
pendencies. For space reasons other examples where the 
method could be usefully applied have not been included. 
In addition to these, some other series were found in the 
literature where the activity spread between the members 
of the initial compound group was too small to permit a 
meaningful analysis. 

A key feature is that, based on the results from only four 
or five readily available analogues, the correct synthetic 
direction for increased potency can often be determined. 
At this stage the parameter dependency can usually be 
narrowed to a small range of possibilities and further 
substituents can be chosen which should increase potency 
no matter what the precise activity-parameter relationship 
is. This marks an important difference between the 
strategy outlined in the present approach and that of the 
standard Hansen method. In the latter method the object 
is to first determine, utilizing a computer based analysis 
of the results on eight to twelve compounds, a precise 
activity-parameter relationship in the form of an equation. 
This equation is then used to select new analogues which 
should have improved potency. On the other hand, the 
manual method does not attempt to precisely identify the 
activity-parameter relationship but seeks to use a more 
rapidly obtained approximate determination of this re­
lationship as a stepping stone to the identification of more 
potent analogues. 

In terms of numbers of compounds prepared the pos­
ition reached after preparation of the second compound 
group in the manual method is roughly equivalent to that 
reached after a multiple regression analysis on the first 
group of compounds made in the standard Hansch ana­
lysis.24 Thus, to the extent that the present manual 
method can successfully narrow the possible operative 
parameter dependencies at the end of the first stage, it may 
represent a more advantageous strategy if the primary goal 
is to find a readily accessible compound in the maximum 
potency area in the shortest possible time rather than to 
determine the exact activity-parameter relationship. Also, 
computers and statistical procedures are not required thus 
offering greater simplicity of use for most medicinal 
chemists. 
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A statistical-heuristic method for selecting drugs for animal screening is developed with molecular structure features 
as predictors of biological activity. The method is intended to work on large amounts of data over varied structures. 
A trial of this method on a small data set allows some comparison with more sophisticated pattern recognition methods. 
Problems connected with interdependence among structure predictors are critical in this method and schemes to 
eliminate redundancy are reviewed. Alternate sets of structure predictors are considered. The discussion here outlines 
directions to be taken in the near future. 

A major activity of the Developmental Therapeutics 
Program (DTP) in the Division of Cancer Treatment 
(DCT), National Cancer Institute (NCI), is the develop­
ment of new drugs useful in the treatment of human 
cancer. As one means of identifying leads to such drugs, 
PTP, which subsumed the Drug Research and Develop­
ment Program (DR&DP), operates an antitumor screening 
program that involves the testing of compounds in a 
variety of animal tumor models. Because of the limited 
capacity for screening, currently roughly 15000 synthetic 
compounds per year, and the almost limitless possibilities 

for obtaining compounds, many approaches to selecting 
acquisitions or assigning priorities of testing are being 
explored. 

Some of these approaches involve the use of biological 
test data from previous acquisitions and chemical structure 
data to create a system for predicting the biological activity 
of a new compound by examining its chemical structure.1,2 

Chemical structural parts are obvious choices for prediction 
parameters because of their clear pertinence and easy 
availability. At NCI automated files currently contain 
chemical structure on more than 280000 compounds and 
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2426000 antitumor test results.34 

Automated selection of drugs, as described here, differs 
from more standard approaches5'6 to quantitative struc­
ture-activity determinations in that it is intended to apply 
across a broad range of compounds rather than a single 
class. Therein lies its challenge and its opportunity. There 
may be unusual and unnoticed combinations of certain 
chemical structure features that impart a specific biological 
activity. It is the ability to detect such combinations of 
features that renders the computer capable of predicting 
new different active drugs. At the very least, we can expect 
an enrichment of the incidence of biologically active 
compounds among those selected by this method. 

The basic statistical-heuristic method is described here, 
together with the results of an experimental trial on a 
relatively small set of data. This report is intended as the 
first in a series that will deal with this statistical-heuristic 
approach to structure-activity studies on data derived from 
the DR&DP files. Future reports will contain results for 
the P388 lymphocytic leukemia model, which represents 
the crucial test for this method, and the L1210 lymphoid 
leukemia model. Preliminary results on the P388 model 
are very encouraging. If the validity of this method is 
demonstrated by extensive feasibility testing, it will be 
used in an operational environment. 

The method to be described uses the chemical structure 
data in a straightforward way to predict biological activity. 
See Cramer et al.7 for a similar approach. This method 
is more statistically sophisticated than Cramer's without 
essential loss of simplicity. An implicit assumption of both 
methods is independence, but the features are often in­
terrelated or redundant. Therefore, there are sections on 
the chemical structure features and ways to deal with this 
complicated issue of interdependence. 

The structure fragments we use as features will not 
always appear in context as they do in the Free-Wilson 
method,8 for example. Although the quantitative approach 
appears superficially similar to the Free-Wilson method 
in its use of additivity of constants for the structure 
features, the interpretation is quite different. It will be 
clear from the derivations that the weights and scores we 
derive later are to be interpreted as measures of the 
probability of activity of a compound if it has the given 
features, not as contributions to activity. This is a subtle 
difference, but it will be seen that it is the justification for 
our use of additivity. 

The method was chosen because it is capable of handling 
a large number of compounds and features, and it ac­
commodates the widely disparate incidences of the various 
structure features. Also, it is a simple approach in which 
it is easy to see why a given feature receives its weight. 

Basic Scoring Method. Like all prediction methods, 
the process begins with a set of known actives and a set 
of known inactives. These are called training sets and they 
are used separately in a similar way to derive, for each 
feature present, a weight for activity and a weight for 
inactivity. The activity and inactivity scores for a com­
pound are then found by summing the respective weights 
of all its structure features. These two scores can then be 
used to establish "priorities" among a set of unknowns in 
a manner to be described later. 

The active training set is used to derive the activity score 
as follows. Essentially, the method assigns a weight to each 
structural feature based on the statistical significance of 
its frequency of occurrence in the active training set. In 
this way, each structural feature is assigned a numerical 
weight estimating the probability of activity in the 
specified test system of a compound that has the feature. 

An important aspect of the method is its use, as a 
standard, of the incidence of the feature in the total 280000 
compound file which has been tabulated. If this incidence 
is p and there are n active compounds then np actives 
would be expected to have the given feature, under the 
assumption that the feature has nothing to do with ac­
tivity. The weight is determined by how far the actual 
number of actives with the feature differs from its expected 
value. This method is analogous to that of Cramer et al.7 

where the weight given to a feature is simply the actual 
number of actives with the feature minus the expected 
number.9 Our method assigns weights according to the 
statistical significance of this difference. 

It is easiest to illustrate the computation of the weight 
by an example from a trial run that will be discussed in 
more detail later. The feature C-C-N where both single 
bonds are ring bonds occurs in 0.177 (17.7%) of the file. 
Therefore, in a set of 33 compounds active in the trial 
system, 5.83 are expected to have this fragment, assuming 
it has nothing to do with activity. Moreover this number 
should follow the binomial distribution with a mean of 5.83 
and a standard deviation of [np(l - p)]l/2 or 2.19, using 
p = 0.177 and n = 33. In our example of 33 actives, the 
actual number containing this feature was 11. Thus, the 
number of standard deviations (SD's) away from the mean 
is (11 - 5.83)/2.19 or 2.36. 

This number, 2.36, could be used as the weight for this 
feature, but we can consider further the probability P that 
we can get 2.36 SD's away by chance. Using the normal 
approximation to the binomial distribution a statistical 
table shows that the two-tailed value for P is 0.0183. Since 
the weight should be inversely related to P (the smaller 
the P, the larger the significance), 1/P is used. And since 
the weights are to be added log 1/P is used, which is 1.75 
in this case. P is thus a probability related to the fact that 
a compound is active, and log 1/P is a measure of this 
probability. Log 1/P is used because it gives convenient 
magnitudes and has the following additivity properties. 

Forming the score for a new compound by adding the 
weights for each feature corresponds to multiplying the 
probabilities, P;, for each feature. That is 

s(iogi/p,.) = iogn(i/P,) = iogi/nP,-
£ represents summation and II represents multiplication, 
both over the index i. Thus, there is no assumption of 
additivity such as is found in the Free-Wilson method 
although the effect is similar. We are merely computing 
a measure of the probability of activity of a compound 
based on the statistical evidence of its features. Thus, the 
resulting score is not an estimate of the degree of activity 
but an estimate of the probability that the compound 
belongs to the active set. Multiplication is a proper way 
to combine probabilities under the assumption of inde­
pendence of features. More will be said about this as­
sumption later as it ties in with our discussion of re­
dundancy among features. 

In the above illustrative computation of the weight for 
a feature, the feature appeared more often in the active 
set than its expected value. If it had appeared less often 
then it would be considered to be a negative number of 
standard deviations from its normal value and its weight 
would be computed in the same way but with a negative 
sign.10 Thus, the negative weights are additive in the same 
way as the positive weights and can be considered as a 
measure of the probability that the compound does not 
belong to the active set. Equal parts of negative and 
positive weights can cancel each other out. 

The conversion from a number of standard deviations 
to log 1/P is plotted in Figure 1. Logarithms are taken 
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Table I." Compound No. 129/942, Active Score = 20.535, Inactive Score = -3.587 

CH 2 CH 2 N NH 

0 0 

Actual 
Key no. Key occur. 

17 MISC TM (tautomer) 1 
18 MISC UN (universal) 1 
30 RSIZE 6 2 
30 RSIZE 6 2 
95 RING C 4 N 2 (0,2) 2 
95 RING C 4 N 2 (0,2) 2 

153 NUC C 4 N 2 (0,2) 2 
153 NUC C 4 N 2 (0,2) 2 
258 AAKEY C C N Nl Nl 2 
258 AAKEY C C N Nl Nl 2 
272 AAKEY C C O Rl NT 4 
272 AAKEY C C O Rl NT 4 
272 AAKEY C C O Rl NT 4 
319 AAKEY C N O RT NT 4 
319 AAKEY C N O RT NT 4 
319 AAKEY C N O RT NT 4 
340 AAKEY N C C Rl Nl 4 
340 AAKEY N C C Rl Nl 4 
340 AAKEY N C C Rl Nl 4 

a The scoring of a sample compound from the study to be described later, 
discussed in the section on eliminating redundancy. 

Activity 
wt 
1.741 
0.000 

-0.366 
-1.333 

3.095 
1.558 
4.594 
0.978 
0.952 
0.594 
0.757 
1.831 
2.724 
1.325 
0.345 
0.178 
0.332 

-0.144 
1.375 

Inactivity 
wt 

1.875 
0.000 

-5.146 
-1.901 

0.688 
-0.169 
-0.326 

0.000 
0.441 
1.498 
0.952 

-0.728 
0.000 
0.955 

-0.253 
-0.529 

0.367 
0.357 

-1.669 

Wt 
occur 

1 
1 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
3 
1 
2 
3 
1 
2 
3 

Note the multiplicities of key occurrences, 

Figure 1. The weights are determined by the number of standard 
deviations according to the log 1/P relation, changing to the 
identity relation for larger numbers of standard deviation. P is 
the two-tailed statistical P value for the corresponding number 
of standard deviations. 

to base 10. Statistical tables rapidly run out when the 
number of standard deviations exceeds 4, because P in the 
normal distribution decreases faster than exponentially. 
For these larger number of standard deviations, the 
number of standard deviations is used as the weight of the 
feature. The two weighting functions mesh at about no. 
of SD's = 3.6 as is shown in Figure l.11 

The weights and scores log 1/P that will be shown to 
be obtained from our data would give extremely low values 
in many cases if converted back to P values. That is 
because the active and inactive sets are compounds that 
were actually chosen purposely rather than randomly and 
may not be representative of the file. Under these con­
ditions, and since there are no readily available as­
sumptions about the selection of compounds for the 
training set, the use of log 1/P gives a good spread of 
values, while retaining the appropriate order. 

Each compound receives a score which is the sum of the 
weights for all its features. As discussed earlier, the set 
of known active compounds provides an activity score for 

a given test system, and the set of inactive compounds 
provides an inactivity score. An example of a compound's 
keys, weights, and scores is shown in Table I. 

Establishing Priorities. The activity and inactivity 
scores can be combined in various ways depending on the 
needs of the selection program and based on the results 
on the training sets. For example, if compounds were 
desired with structures unlike those that have been ex­
tensively tested, those compounds with low scores, es­
pecially low inactivity scores, would be selected. That is, 
a rule would be established under which compounds with 
low activity and low inactivity scores would be given higher 
priority for acquisition for testing than a compound with 
both a high activity and a high inactivity score. 

A simplier rule would be the use of a threshold for 
activity and a threshold for inactivity, depending on the 
range of the training set scores. The thresholds can vary, 
depending on the number of false positives one is prepared 
to admit. 

Another variation, which is used in the experiment 
described below, is to combine the activity and inactivity 
scores into a single value, to be used as a priority value for 
testing in the specified system. This variation recognizes 
that any statistical method is not foolproof and should not 
be the basis for the complete exclusion of a compound from 
all screening. Even the compounds assigned the lowest 
priority by a statistical method can be selected for testing 
in other systems and can be selected for testing in any 
system for any other reason. 

One type of rule can assign priorities by computing a 
linear combination of the activity and inactivity scores. If 
the activity and inactivity scores are plotted along two axes 
in a plane, each compound appears as a point whose co­
ordinates are the scores. Then any linear combination of 
the two scores can be represented geometrically as a 
projection of each point onto a line of a given direction, 
the priorty being measured along that line. See Figure 2 
for an example of the Fisher direction12 which was designed 
to provide optimum separation between the known actives 
and known inactives of the training sets when they are 
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Figure 2. The projections of the dots and crosses onto two lines 
show that directions can be chosen to enhance separation of the 
projected classes of points. The Fisher direction is optimal under 
certain normality assumptions. 
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Figure 3. The activity scores (abcissa) and inactivity scores 
(ordinate) of the 24 compounds that were treated as unknowns 
inrefl2. The seven actives were labeled X. Two of the actives 
overlapped, so there are only six X's in the plot. 

projected along this direction. This method was used in 
the study to follow. Establishing priorities allows the easy 
use of rank tests to provide a measure of effectiveness on 
the unknowns. 

Mouse Ependymoblastoma Study. A set of 170 
compounds, which had been tested in mouse ependy­
moblastoma,13 was selected for an experimental trial. 
These compounds covered a broad range of structure 
classes and, moreover, have recently been the subject of 
a structure-activity methodology study by Chu et al.1 

involving prediction by nearest neighbor and learning 
machine methods. One of our objectives was to see 
whether our simpler method led to equally good results. 

o u (/> 
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-100 
-100 100 

ACTIVITY SCORE 

Figure 4. The ten additional unknowns in our data. These actives 
(X) are all marginal, with T/C of about 125%. 

100 
ACTIVITY SCORE 

Figure 5. A plot of the known actives (A) and inactives (I) of 
the training set. The Fisher direction provides an idea of the kind 
of separation that can be expected from our method. 

The training set we used was substantially the same as 
in Chu et al., consisting of 33 actives and 103 inactives. 
Prediction was done on precisely the same set of 24 
compounds which were actually incompletely tested at the 
time Chu was predicting them. Seven of the 24 compounds 
subsequently turned out to be active. While the reliability 
of the biological data would be improved with the criterion 
for activity set at a T/C14 of 150%, a T/C of 125% was 
used in order to provide a larger number of active com­
pounds. The resulting data were not completely satis­
factory because six of the seven active unknowns were 
quite similar to each other in their structure features and 
scores based on them. Ten more unknowns, which had 
been tested later, were also predicted. These ten com­
pounds had four actives, all in the marginal T/C range of 
125-150%. 

The resulting separation was excellent on the original 
set of 24 unknowns and compared favorably with the 
results of Chu et al. In Figure 3 we show the activity and 
inactivity scores of this set with the seven that were active 
represented as X's and the others as O's. The additional 
ten unknowns are shown in Figure 4, and we see that the 
resulting separation is not nearly as good. 
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EXAMPLE: AA KEYS 

0 

H J C - C H J - C - O — - • 

c-c-c 

0 
II 

C - C - 0 

0 
1 

C-C 

0 

c 

C-CI2X) 

0 
i 

C-0 

C-

IB) KEYS DESCRIBING RING SYSTEMS 

^ v y N v 

oQ— ( 
CH, 

RSI 

NUC 

RIN 

RIN 

^ 

(C) MISCELLANEOUS: 

6,6 

C9N 

CBN 

C6 

C - C - 0 

-0 

"RESONANT" BONDS 

OTHER UNSATURATIONS 

16, 11 

(1.11 

16,01 

ELEMENTS, A86TDS TRUCTURAL 
CHARACTERISTICS, SOME 
NON-STRUCTURAL CHARACTERISTICS. 

Figure 6. Illustration of keys on the NCI chemical file; courtesy 
of M. Milne and G. Hazard. 

The training set itself, consisting of 136 compounds, can 
be plotted in the same way as is shown in Figure 5. The 
actives are represented by the letter A and the inactives 
by the letter I. Also a line in the Fisher direction is shown. 
When all the 34 "unknown" compounds, of which 11 were 
active, were arranged in the priority ordering determined 
by the Fisher direction, the sum of the ranks of the 11 
actives was 133 for a significance level of 0.014 using the 
Wilcoxon rank sum test.15 At that level of significance we 
can reject the hypothesis that there is no difference be­
tween the active and inactive unknowns. 

Chemical Structure Features. For the presentation 
of further results it is necessary to review the chemical 
structure features that were taken from the DR&DP 
chemical file. These were keys that are generated routinely 
for information retrieval purposes. It was hoped that they 
would be useful for a selection process as well. 

The structure keys were developed under contract by 
the University of Pennsylvania16 for DR&DP and are 
basically of two types: small "augmented atom" (AA) 
fragments and ring keys. See Figure 6. The AA keys each 
consist of a nonterminal atom and one or more of the 
atoms bonded to it, up to a total of five atoms. The ring 
keys can be further divided into simple ring, nucleus, and 
ring size keys. There are more than 10000 structure keys 
because of the extensive bonding information they contain. 
In the AA keys each bond is distinguished along two 
parameters according to whether it is ring or nonring and, 
second, whether it is single, double, triple, aromatic, 
tautomer, or delocalized. Likewise, in the simple ring and 
nucleus keys counts are kept of two categories, the first 
being aromatic and delocalized bonds and the second being 
the total of all other nonsingle bonds. This bond re­
finement forces a situation where most keys occur ex­
tremely rarely in the file; indeed, less than 10% of the keys 
occur in more than Vioooth of the file. 

Figure 7. Structure in which redundant keys are difficult to 
recognize by merely examining keys. 

Aside from being discriminatory for the purposes of 
retrieval, which these keys seem to be, structure features 
used for preselection must have sufficiently many keys 
among them that are relevant to activity in the various test 
systems. However, if there are too many irrelevant keys, 
there is a good chance that some of these may appear 
relevant in some of our data. This is the problem of noise, 
which is related to redundancy among keys. 

Redundancy among Features. The problem of re­
dundancy, or interdependence of features, is quite per­
tinent, if only because the method used in this study 
assumes independence of features. The net effect of re­
dundancy is to cause some characteristics to receive more 
than their due weight, since they are represented in more 
than one key, and these keys are considered independently. 
Thus, allowing these redundancies leads to a further 
distortion on a system which is already imperfect, since 
many characteristics are not represented by complete keys 
but only by fragments which are sometimes connected, 
sometimes unrelated. 

There are many obvious redundancies among the 
structure keys in the chemical file. For example, the 
benzene ring has the key RING C6 (6,0) which is present 
in approximately 66.6% of the compounds. However, 
there is also a nucleus key, NUC C6 (6,0), which occurs 
whenever a compound has a benzene ring which is not part 
of a larger ring system. This occurs in 53.6% of the 
compounds. Other dependent keys with these two are the 
C-C and C-C-C AA keys where the bonds are ring aro­
matic. These benzene-related keys happened to receive 
fairly large negative weights both for activity and inactivity. 
It was apparent that these keys contributed to poor results 
in two or three compounds in early trials. These results 
were improved by the simple elimination of redundancy 
described in the next section. 

It can be seen from the foregoing example that the 
redundancies are not always simply related. Another 
example shows that they are not always easy to detect. 
The key RING C2N3 (1,3) seemed to occur together with 
the key NUC C4N5 (6,3) almost always since they have 
almost exactly the same incidence. This substructure is 
shown in Figure 7. On investigation it was found that the 
ring key occurred in 89 structures and the nucleus key in 
86 structures, but their joint occurrence consisted of 70 
structures. This shows a great deal of redundancy but not 
complete superfluity of either of the keys. 

As is observed in Duda and Hart,17 sometimes inde­
pendence assumptions produce good results even though 
they are not justified. But because of this assumption of 
independence, redundancy should be eliminated wherever 
possible. 

Eliminating Redundancies. A good example of key 
redundancy that was easily removable is that of keys which 
denote not merely presence but the multiplicity of oc­
currence of the structure fragment. Typically, the keys 
in the data did contain counts of the number of occur­
rences. It was decided not to use independent keys for the 
different multiplicities since a compound which has two 
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Figure 8. Compare with Figure 3, after some largely redundant 
features have been removed. 

copies of a certain structure should also be considered to 
have one copy of this structure. Moreover, using each 
multiple as a new key produces keys which are highly 
interdependent. The only way to remove the redundancy 
was to use conditional probabilities, that is, not the actual 
probability that a compound has two (or more) occurrences 
but the probability that it has two (or more) occurrences 
given that it has one (or more) occurrence. 

The expected number of active compounds having two 
(or more) occurrences of the structure can then be com­
puted by multiplying the actual number of actives having 
at least one occurrence of the structure by this conditional 
probability of two (or more) occurrences given one (or 
more) occurrence. This conditional probability is easily 
computed from the frequency statistics by dividing the 
incidence of at least two occurrences of the structure by 
the incidence of at least one occurrence of the structure. 
In our experiment we considered multiplicities up to three 
(or more) occurrences. 

As an experiment in eliminating redundancy among the 
keys, many of the AA keys were excluded as follows. Those 
which are atom pairs were eliminated because the in­
formation is contained in the three atom keys. Also ex­
cluded were the four atom AA keys since much of the 
information is already contained in the three atom AA keys 
and their counts. With this smaller set of keys, a new run 
of the training and priority assignment produced a rank 
sum of 117 for the 11 actives. This is significant at the 
0.0027 level. 

As a further experiment all AA keys with only ring bonds 
were excluded, as well as the even atom AA keys just 
described. These ring bond AA keys can be considered 
to be covered to some extent by the ring keys. The rank 
sum of the 11 actives was then down to 107, significant at 
the 0.0008 level. The results are shown in Figures 8-10. 

Remarks and Conclusions 
The experimental trial showed that on a small set of 

murine ependymoblastoma data this simple statistical-
heuristic method using structural features as predictors 
of activity in a specific model compared favorably with a 
more sophisticated pattern recognition method. Simple 
experiments on removing redundancy among the features 
improved the results. 
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Figure 9. Compare with Figure 4, after some largely redundant 
features have been removed. 
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Figure 10. Compare with Figure 5, after some largely redundant 
features have been removed. 

It will be necessary to verify in larger data sets this 
improvement in performance upon the simple exclusion 
of keys which are already somewhat covered by other keys. 
In any case, this is a fairly crude approach to removing 
redundancy. 

A more exact approach would be to use the containment 
relations among keys as was used in the case of multiple 
occurrences. However, it is difficult to get direct inclusion 
conditional probabilities among the keys. Joint incidences 
are not available and most keys have more than one 
smaller key included, or possibly included, in their 
structures. 

The main difficulty with the NCI structure keys lies in 
the finding of dependencies across different classes of keys. 
The AA key dependencies can be to some extent estab­
lished among themselves. However, there is a big gap from 
the AA keys to the ring keys and indeterminacy in 
placement of the bonds in the ring keys makes direct 
dependence difficult to establish. Some of these difficulties 
can be appreciated by referring to the examples of in­
terdependence cited earlier. 

Thus, besides the extension of this work to more sig­
nificant data, it will be productive to carry out procedures 
for eliminating redundancy among the features. Along this 
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vein, different sets of features will be tried. A completely 
different set of keys18 designed for retrieval at the Walter 
Reed Army Institute of Research has the property that all 
the conditional probabilities are available from the gen­
eration of these keys in the form of a hierarchy according 
to information-theoretic principles.19 I t is also possible to 
generate features for the purpose of good biological dis­
crimination, using the active and inactive training sets as 
guides. * 

The use of other feature systems must wait upon the full 
implementation of the new sets of features. Of course, to 
get a completely adequate set of features, we would need 
to include stereochemistry. One way to achieve three-
dimensional features would be by autocorrelation on 
electron density maps. However, this is a fairly complex 
approach, which may be difficult to apply on a large scale. 

The study of the feasibility of using this statistical-
heuristic method for selecting drugs for testing in the P388 
model is now under way and will be reported soon. 
Preliminary results show excellent separation of actives 
from inactives by means of the activity score alone. In the 
P388 data, it seems tha t including the inactivity score 
produces a small, perhaps marginal, improvement, and 
eliminating redundancy as by the elimination of keys 
produces a bigger, but still marginal, improvement. If 
further work on the P388 model bears out the early results, 
then it is possible that very sophisticated structure features 
may not be necessary, or merely marginal. 
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Anticoccidial Derivatives of 6-Azauracil. 1. Enhancement of Activity by 
Benzylation of Nitrogen-1. Observations on the Design of Nucleotide Analogues in 
Chemotherapy 

Banavara L. Mylari, Max W. Miller,* Harold L. Howes, Jr., Sanford K. Figdor, John E. Lynch, 
and Richard C. Koch 
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Benzylation of 6-azauracil at N-l (which corresponds to the point of attachment of the ribose phosphate unit in 
pyrimidine nucleotides) has been found to augment its anticoccidial activity fourfold. The high potency of 1-
benzyl-6-azauracil is ascribed to a combination of intrinsic activity, efficient oral absorption, and a moderate rate 
of excretion. Metabolism experiments using l-benzyl-6-azauracil labeled with 14C in the heterocycle and (separately) 
in the side chain showed that, in the drug accounted for, no cleavage had occurred. Additional activity increases 
were achieved by introducing small, electron-withdrawing substituents in the meta and/or para position(s) of the 
benzyl group. One of the most active derivatives, l-(3-cyanobenzyl)-6-azauracil, is about 16 times as potent as 
6-azauracil. 

The exigencies of the world food supply have led to ever 
more intensive agriculture and animal husbandry. 
Large-scale enclosed poultry rearing has been made 

possible during the last 25 years by the discovery of 
feed-incorporated anticoccidials to control the most 
troublesome social disease of fowl. Coccidiosis is caused 


